Reactivity of Iso-diiodomethane and Iso-iodoform, Isomers of CH₂I₂ and CHI₃, toward the Double Bond of a Variety of Cycloalkenes

Alexander N. Tarnovsky,*,† Irmin Pascher,‡ and Torbjörn Pascher*,§

Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, Department of Medical Chemistry, University of Gothenburg, SE-40530 Gothenburg, Sweden, and Department of Chemical Physics, Chemical Center, Lund University, Getingevägen 60, SE-22100 Lund, Sweden

Received: May 21, 2007; In Final Form: August 29, 2007

The metastable CH_2I-I and CHI_2-I isomers formed by UV photolysis of CH_2I_2 and CHI_3 transfer methylene and iodomethylene groups, respectively, to a variety of cycloalkenes, leading to their cyclopropanation. More than a 100-fold increase of the reaction rate with increasing solvent polarity suggests a dipolar transition state. The fastest second-order rates observed were in CH_3CN . However, CH_2Cl_2 will be the more appropriate reaction medium because the isomer thermal stability is greater in CH_2Cl_2 than in the more polar CH_3CN .

Introduction

Photocyclopropanation via ultraviolet irradiation of diiodomethane (CH₂I₂) and iodoform (CHI₃) in the presence of olefins at room temperature in solution is a reaction of synthetic value,¹⁻⁴ and it has recently received renewed attention.⁵ The reaction mechanism and criteria for selection of an optimal set of conditions remain little understood. UV photolysis of CH₂I₂ in solution has been recently shown to lead to the cleavage of one of the two C–I bonds followed by the efficient primary geminate combination of CH₂I⁻ and I⁻ to form the CH₂I–I isomer (iso-diiodomethane).^{6–9} The decay of CH₂I–I follows a mixture of first-order (dissociation back to the radicals, and, in very polar solvent, to ions) and second-order (trapping by CH₂I⁻ and I⁻) processes, Scheme 1.⁷

Upon UV photolysis of CH₂I₂ in the presence of cyclohexene (c6) in solution, CH₂I-I was found to react with c6 with expulsion of I_2 .^{7,10} This behavior is consistent with the isomer serving as the methylene transfer agent.¹⁻⁴ According to IR absorption spectra of the CH₂I-I molecules trapped in frozen matrices, one of the possible resonance forms for this isomer species is the contact ion pair structure with an electrophilic \hat{C} -atom (H₂C⁺-I···I⁻).^{11,12} Ab initio MP2 calculations suggest a noticeable bonding interaction between the two iodine atoms.¹³ Density functional theory (DFT) calculations on isolated molecules indicate that the CH₂I part of the CH₂I-I isomer has cationic character and that CH2I-I can react with an olefin (ethylene) in one step to yield cyclopropane and I_2 .¹⁴ UV photolysis of iodoform (CHI₃) in solution leads to similar steps: cleavage of the C-I bond, recombination into the CHI2-I isomer (iso-iodoform), and cage escape of the geminate radical pair.^{15,16} Also, there is evidence for considerable radical trapping of the CHI₂-I intermediate.¹⁶ Previous photochemical synthetic studies reported that UV irradiation of CHI3 in the presence of c6 and several linear alkenes produces synthetically useful

TABLE 1: Rate Constants (k_0) of the First-Order Process $CH_2I-I \rightarrow Products$ and $CHI_2-I \rightarrow Products$ in the Alkene-Free Solvents

	k_0 (s	$k_0 (s^{-1})$		
solvent	CH ₂ I-I	CHI ₂ -I		
$\begin{array}{c} n\text{-}C_6H_{14}\\ c\text{-}C_6H_{12}\\ CH_2Cl_2\\ CH_3CN \end{array}$	$\begin{array}{l} (1.8 \pm 0.4) \times 10^{5 a} \\ (4.1 \pm 0.5) \times 10^{5 c} \\ (2.2 \pm 1.1) \times 10^{5 c} \\ (4.3 \pm 0.3) \times 10^{6 a} \end{array}$	$\begin{array}{l} (5.5 \pm 0.5) \times 10^{5b} \\ (5.7 \pm 0.7) \times 10^{5c} \\ (4.4 \pm 0.7) \times 10^{6b} \\ (4.2 \pm 0.2) \times 10^{6c} \end{array}$		

^{*a*} Obtained in ref 7 by extrapolating the measured photolysis energy dependence of the k_{obs} rate from low to infinitely low energies. See also ref 24. ^{*b*} Obtained as above, ref 16. ^{*c*} The k_{obs} rates and their standard deviations based on repeated measurements at very low photolysis energies (μ J pulse⁻¹): 15 (CH₂Cl₂), 35 (CH₃CN) for CHI₃, and 3.5 (CH₂Cl₂), 35 (*c*-C₆H₁₂) for CH₂I₂, this work.

amounts of iodocyclopropanated products, in addition to I_2 .¹⁷ Both CHI₂–I and the CHI₂ radical were proposed to be iodomethylene transfer agents.^{5,18}

In the present work, we wish to report transient spectroscopic studies of the photocyclopropanation reaction between the CH_2I-I isomer of CH_2I_2 and several cycloalkenes, specifically cyclopentene (**c5**), cycloheptene (**c7**), 1-methylcyclohexene (**Me-c6**), and 1,2-dimethylcyclohexene (**diMe-c6**). A similar study was conducted of the photocyclopropanation reaction between the CHI_2-I isomer of CHI_3 and **c6**.

^{*} Corresponding authors. A.N.T.: Phone, (419) 374-3865; fax, (419) 372-9809; e-mail, atarnov@bgsu.edu. T.P.: Phone, 46-46-222-4739; fax, 46-46-222-4119; e-mail, torbjorn.pascher@chemphys.lu.se.

[†] Bowling Green State University.

[‡] University of Gothenburg.

[§] Lund University.

Figure 1. The pseudo first-order $k_{obs-olefin}$ decay rates (symbols) of the CH₂I–I isomer plotted against cycloheptene (**c7**) content for the photolyzed (0.04 mJ pulse⁻¹) samples of CH₂I₂ (1 mM) in the deoxygenated solvents cyclohexane (**I**), dichloromethane (\bigcirc), and acetonitrile (\bigtriangledown). The slope of the linear fit (lines) gives the second-order k_q rate constants summarized in Table 2. As seen in the inset, the 390 nm absorption band of the CH₂I–I isomer in CH₂Cl₂ solution decays as a single exponential with the corresponding decay rate constant $k_{obs-olefin}$ in the presence of excess **c7**. The cycloalkene concentration (M) in the photolyzed solution is shown beside each decay curve.

SCHEME 2

Experimental Section

In our setup,¹⁹ the 310 nm photolysis pulse (~8 ns fwhm) was produced by frequency doubling the 620 nm output from an OPO pumped by the 355 nm output from the Nd:YAG laser. The photolysis pulse typically delivered $3.5-70 \,\mu$ J into a 2 mm diameter spot at the sample. The CH₂I₂ (1 mM) and CHI₃ (1 mM) samples (20 ± 1 °C) were deoxygenated and sealed in a 1 cm cuvette equipped with a magnetic stirrer. CH₂I₂ and CHI₃ (both from Fluka, >98%), solvents (Merck, p.a.), **c6** (Aldrich, 99+%), **c5** (Fluka, ≥98.5%), **c7** (Aldrich, 97%), **Me-c6** (Fluka, ≥99%), and **diMe-c6** (Sigma) were used as received.

After excitation of CH₂I₂ and CHI₃, the decay of the CH₂I–I and CHI₂–I isomer products was monitored via their absorption bands centered at ~390 and 560 nm (CH₂I–I, ref 7) and at ~450 and 600 nm (CHI₂–I, ref 16). The observed decay rate of the CH₂I–I and CHI₂–I isomers in the presence of excess olefin ($k_{obs-olefin}$) is described by $k_{obs-olefin} = k_{obs} + k_q \times$ [olefin], where k_{obs} is the observed isomer decay rate constant under the same conditions with no olefin present, and k_q is the secondorder photocyclopropanation rate constant. The k_{obs} rates are approximated as $k_{obs} = k_0 + k_t \times [radicals, isomer]$, where k_t is the total trapping rate constant.

Results and Discussion

The CH₂I–I isomer intermediate is produced by means of 310 nm nanosecond photolysis of CH₂I₂ in deoxygenated cyclohexane, dichloromethane, and acetonitrile. The CHI₂–I isomer is formed from CHI₃ in the same way. Under low excitation conditions, the decay rate constant (k_{obs}) of both the CH₂I–I and the CHI₂–I isomers is observed to be in the 10⁶–10⁷ s⁻¹ range, with little I₂ formed directly. The true first-order rate constants (k_{0}) of the decay of CH₂I–I and CHI₂–I in neat solvents can be obtained by extrapolating the isomer decay rates measured under low excitation conditions to infinitely low power that corresponds to the rate in the absence of trapping, Table 1. The k_0 rates are 10 times faster in CH₃CN than in the less polar c-C₆H₁₂ and CH₂Cl₂, because of the opening of the ionic decay channel.⁷

The decay of the CH₂I-I isomer is accelerated by the addition of increasing concentrations of cycloalkenes in all three solvents, Figure 1. The absorption rise of I₂ at low alkene concentrations and alkene:I₂ charge-transfer complexes²⁰ (probe wavelength, 320 nm) at high alkene concentrations occurs with rate constants similar to those of the CH₂I-I isomer decay. This behavior is consistent with cyclopropanation of the alkene C=C bond by CH₂I–I, Scheme 1. Generally, as the polarity of the solvent increases on going from $c-C_6H_{12}$ to CH_2Cl_2 , the cyclopropanation rate (k_a) increases by a factor of 100, and going from CH₂Cl₂ to CH₃CN increases the k_q by a factor of ~1.5, Table 2. This is consistent with a photocyclopropanation mechanism involving a highly dipolar activated complex, as shown schematically in Scheme 2. This transition complex can be drawn either as the open carbocationic structure with a single bond between the carbonic carbon and one alkene carbon or as the closed carbocation with partial bonding between the carbenic carbon and both alkene carbon atoms. The latter probably occurs based on the observed stereospecificity for the photocyclopropanation reactions involving simple alkenes.^{3,17}

The effect of the ring size is modest, Table 2. The reaction rate for **c5** is about one-half of the rate for **c6** and **c7**, with the corresponding relative rates averaged over the solvents being 0.51, 1.0, and 0.94. This reactivity trend follows the ring strain energy.²¹ This can be understood by noting that CH₂I–I is a highly energetic species lying approximately 170 kJ mol⁻¹ above the ground state of CH₂I₂^{13,14} and that the transition state for an exothermic reaction closely resembles reactants according to Hammond's Postulate.²² The less strained **c6** and **c7** will have a smaller transition state energy and react faster than the more strained **c5**.

Methyl substitution at the cyclohexene double bond has a more profound effect, Table 2. **Me-c6** reacts about 10 times

TABLE 2: Photocyclopropanation Rate Constants (k_q^a) for the CH₂I-I Reagent

	alkene				
solvent	c5	c6	c7	Me-c6	diMe-c6
$n-C_6H_{14}$	(2, 2, 1, 0, 5) + 105	$(4.4 \pm 0.3) \times 10^{5 b}$	$(4.6 \pm 0.2) + 105.6$	$(4.5 \pm 0.2) + 106c$	(2.6.1.0.2) 106f
$C-C_6H_{12}$ CH ₂ Cl ₂	$(2.3 \pm 0.5) \times 10^{57}$ $(2.2 \pm 0.1) \times 10^{7d}$	$(4.1 \pm 0.5) \times 10^{52}$ $(3.4 \pm 0.2) \times 10^{7d}$	$(4.6 \pm 0.3) \times 10^{5}$ $(3.2 \pm 0.2) \times 10^{7}$ c	$(4.5 \pm 0.3) \times 10^{8} e^{-1}$ $(3.7 \pm 0.3) \times 10^{8} e^{-1}$	$(5.6 \pm 0.3) \times 10^{6}$ $(6.0 \pm 0.1) \times 10^{7}$
CH2CN	$(21 \pm 01) \times 10^{7d}$	$(3.4 \pm 0.2) \times 10^{7 b}$ (6.2 ± 0.3) × 10 ^{7 d}	$(4.8 \pm 0.3) \times 10^{7}$ c	$(4.8 \pm 0.2) \times 10^{8e}$	$(5.8 \pm 0.5) \times 10^{7f}$
engelv	$(2.1 \pm 0.1) \times 10$	$(0.2 \pm 0.3) \times 10^{7 b}$ $(4.2 \pm 0.9) \times 10^{7 b}$	(4.0 ± 0.5) × 10	$(4.0 \pm 0.2) \times 10$	$(5.0 \pm 0.5) \times 10^{-1}$
$1,2-C_2H_4Cl_2$	1.7^{g}	1^g	1.4^{g}	3.6^{g}	8.7^{g}

^{*a*} In M⁻¹ s⁻¹. ^{*b*} Reference 7. ^{*c*} The investigated concentration range of cycloalkenes is 0.03-1 M. ^{*d*} As above, but 0.03-0.5 M. ^{*e*} As above, but 0.03-0.3 M. ^{*f*} As above, but 0.003-0.1 M. ^{*s*} Relative rates, refs 3,4.

Figure 2. Dependence of the pseudo first-order $k_{obs-olefin}$ decay rate of the CHI₂−I isomer (symbols) on cyclohexene (**c6**) content of the photolyzed (0.035 mJ pulse⁻¹) sample of CHI₃ (1 mM) in the deoxygenated solvents c- C_6H_{12} (**■**), CH₂Cl₂ (O), and CH₃CN (∇). The slope of the linear fit gives the second-order k_q rate constants shown in Table 3. The 460 and 600 nm absorption bands of CHI₂−I immediately after the photolysis pulse remain constant as the **c6** concentration increases up to 2 M in c- C_6H_{12} (as shown for the 460 nm band in the inset), and up to 1 M in CH₂Cl₂ and CH₃CN after deconvolution of the measured kinetic traces with the apparatus response function, suggesting that under these conditions there is no appreciable cyclohexene trapping of the nascent CHI₂⁻ radical prior to its geminate recombination into the CHI₂−I isomer, contrary to what has been suggested in refs 5 and 18.

TABLE 3: Rate Constants (k_q^a) for the CH₂I–I and CHI₂–I Isomers in Photocyclopropanation of Cyclohexene

	reac	reactant		
solvent	CH ₂ I-I	CHI ₂ -I		
c-C ₆ H ₁₂ CH ₂ Cl ₂ CH ₃ CN	$\begin{array}{l} (4.1\pm0.5)\times10^{5b}\\ (3.4\pm0.2)\times10^{7b}\\ (6.2\pm0.3)\times10^{7b}\\ (4.2\pm0.9)\times10^{7e}\end{array}$	$\begin{array}{l} (0.7\pm0.3)\times10^{5c}\\ (0.7\pm0.1)\times10^{7d}\\ (2.0\pm0.3)\times10^{7d} \end{array}$		

^{*a*} In M⁻¹ s⁻¹. ^{*b*} For the investigated concentration range of cyclohexene, see Table 2. ^{*c,d*} The investigated concentration ranges of cyclohexene are 0.03-2 and 0.05-1 M, respectively. ^{*e*} Reference 7.

faster than does **c6** in all solvents. This is because the resulting partial tertiary carbenium ion is more stabilized through hyperconjugation as compared to a secondary carbenium ion. Going from **Me-c6** to **diMe-c6** results in a significant decrease in rate, probably because increasing substitution increases the steric hindrance, which offsets the increasing nucleophilicity of the more substituted cycloalkene; this behavior parallels that of the Simmons–Smith cyclopropanation reaction, cf., with refs 3 and 4.

Previously, the relative cyclopropanation rates for the same alkenes were obtained from relative product yields after continuous UV irradiation (450 W Hg arc lamp) of CH_2I_2 -containing 1,2-dichloroethane solutions in the presence of equal amounts of two reactive alkenes,³ Table 2. These rates do not correlate with the second-order rate constants measured here. It seems to be unreasonable to attribute the difference solely to the solvent, because CH_2CI_2 and $1,2-C_2H_4CI_2$ are of similar polarity. On the other hand, during the prolonged broadband UV irradiation used in the previous synthetic work, CH_2I^{\bullet} , the $CH_2I_2^{\bullet}$ complex, and CH_2I^+ cation, involved in the liquid-phase photochemistry of CH_2I_2 ,⁷ all might react with olefins via slow routes to produce cyclopropanated products,^{14,23} thus affecting the relative cyclopropanation yields.

The CHI_2 -I isomer reacts with **c6** in a manner analogous to CH₂I–I, but a factor of 4 slower, Figure 2 and Table 3. The CHI2-I isomer is much bulkier and more sterically demanding than the CH₂I-I isomer, which has a much more open structure, and therefore CHI₂-I cannot react with olefins as easily as CH₂I-I does. The cyclopropanation efficiency of the CHI₂-I and CH₂I-I isomers is determined by the speed of the iodomethylene (methylene) group transfer and isomer intramolecular decay, in conjunction with competing trapping of isomers by radicals. The relative importance of the latter process can be reduced by using low photolysis flux. As seen in Table 1, the intrinsic thermal stability of CHI2-I is only slightly smaller than that of CH₂I-I in c-C₆H₁₂ and CH₂Cl₂, whereas both isomers are stable to the same extent in CH₃CN. This, and the somewhat lower quantum yield for the formation of CHI2-I than of CH_2I-I ,^{7,16} suggests that significantly larger alkene concentrations (about 4 times) should be employed to obtain similar photocyclopropanation yields when using the CHI₃ reagent than when using the CH₂I₂ reagent, contrary to what has been conjectured in ref 5.

Conclusions

In summary, the CH₂I-I isomer of CH₂I₂ and the CHI₂-I isomer of CHI₃, both produced by 310 nm laser photolysis, exhibit similar behavior in the presence of a variety of cycloalkenes; the decay of the CH₂I-I and CHI₂-I isomers becomes progressively faster and the I₂ develops with similar rate constants with increasing concentration of the cycloalkene, consistent with the fact that these isomers serve as the methylene transfer agents in the photocyclopropanation of olefins. The dramatic (more than 100-fold) increase of the cyclopropanation rate with increasing solvent polarity is strong evidence of a dipolar transition state. The cycloalkene ring size is found to have a modest (less than a factor of 2) effect on the reaction rate, whereas methyl substitution of the cyclohexene C=C bond has a more pronounced effect. Among the three solvents investigated, CH₂Cl₂ will be most appropriate under a wide range of photocyclopropanation conditions because the reaction is slow in the nonpolar solvent c-C₆H₁₂ and the isomer stability decreases in the strongly polar solvent CH₃CN.

Acknowledgment. We are very grateful to Prof. Torbjörn Frejd and Patrick El-Khoury for many useful discussions. A.N.T. acknowledges support from BGSU (RCE Grant 038/0582).

References and Notes

(1) Blomstrom, D. C.; Herbig, K.; Simmons, H. E. J. Org. Chem. 1965, 30, 959.

(2) Pienta, N. J.; Kropp, P. J. J. Am. Chem. Soc. 1978, 100, 655.

(3) Kropp, P. J.; Pienta, N. J.; Sawyer, J. A.; Polniaszek, R. P. Tetrahedron 1981, 37, 3229.

(4) Kropp, P. J. Acc. Chem. Res. 1984, 17, 131.

(5) Phillips, D. L. *Curr. Org. Chem.* **2004**, *8*, 739–755 and references therein.

(6) Tarnovsky, A. N.; Alvarez, J.-L.; Yartsev, A. P.; Sundström, V.; Åkesson, E. Chem. Phys. Lett. **1999**, 312, 121.

(7) Tarnovsky, A. N.; Sundström, V.; Åkesson, E.; Pascher, T. J. Phys. Chem. A 2004, 108, 237. Addition/Correction: Tarnovsky, A. N.; Sundström, V.; Åkesson, E.; Pascher, T. J. Phys. Chem. A 2005, 109, 954.

(8) Zheng, X.; Phillips, D. L. J. Phys. Chem. A 2000, 104, 6880.

(9) Davidsson, J.; Poulsen, J.; Cammarata, M.; Georgiou, P.; Wouts, R.; Katona, G.; Jacobson, F.; Plech, A.; Wulff, M.; Nyman, G.; Neutze, R. *Phys. Rev. Lett.* **2005**, *94*, 2455031.

(10) Li, Y. L.; Leung, K. H.; Phillips, D. L. J. Phys. Chem. A 2001, 105, 10621.

(11) Maier, G.; Reisenauer, H. P. Angew. Chem., Int. Ed. Engl. 1986, 25, 819.

(12) Maier, G.; Reisenauer, H. P.; Hu, J.; Schaad, L. J.; Hess, B. A., Jr. J. Am. Chem. Soc. **1990**, 112, 5117.

- (13) Glukhovtsev, M. N.; Bach, R. D. Chem. Phys. Lett. 1997, 269, 145.
- (14) Phillips, D. L.; Fang, W. H.; Zheng, X. M. J. Am. Chem. Soc. 2001, 123, 4197.
- (15) Zheng, X. M.; Phillips, D. L. Chem. Phys. Lett. 2000, 324, 175.
 (16) Wall, M.; Tarnovsky, A. N.; Pascher, T.; Sundström, V.; Åkesson, E. J. Phys. Chem. A 2003, 107, 211.
- (17) Yang, N. C.; Marolewski, T. A. J. Am. Chem. Soc. 1968, 90, 5644.
 (18) Li, Y.-L.; Chen, D. M.; Wang, D.; Phillips, D. L. J. Org. Chem. 2002, 67, 4228.
 - (19) Pascher, T. Biochemistry 2001, 40, 5812.

(20) Traynham, J. G.; Olechowski, J. R. J. Am. Chem. Soc. 1959, 81, 571.

(21) Atkinson, R.; Aschmann, S. M.; Carter, W. P. L.; Pitts, J. N., Jr. Int. J. Chem. Kinet. 1983, 15, 721.

(22) Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334.

(23) Li, Y.-L.; Wang, D.; Phillips, D. L. J. Chem. Phys. 2002, 117, 7931.

(24) We noticed a typographical error in ref 7, p 243. We bring to the attention of the reader that the observed decay rate (k_{obs}) of the CH₂I–1 isomer plotted against its starting concentration in *n*-hexane obeys the power law equation with the resultant fitting parameters $k = (1.8 \pm 0.4) \times 10^5$ s⁻¹ and $k_1 = (3.68 \pm 0.79) \times 10^8 \text{ M}^{-1/2} \text{ s}^{-1}$ (instead of $k_1 = (3.68 \pm 0.79) \times 10^6 \text{ M}^{-1/2} \text{ s}^{-1}$).